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Abstract.

The oral drug bioavailability (BA) problems have remained inevitable over the

years, impairing drug efficacy and indirectly leading to eventual human morbidity and
mortality. However, some conventional lab-based methods improve drug absorption leading
to enhanced BA, and the recent experimental techniques are up-and-coming. Nevertheless,
some have inherent drawbacks in improving the efficacy of poorly insoluble and low
impermeable drugs. Drug BA and strategies to overcome these challenges were briefly
highlighted. This review has significantly unravelled the different computational models for
studying and predicting drug bioavailability. Several computational approaches provide
mechanistic insights into the oral drug delivery system simulation of descriptors like
solubility, permeability, transport protein-ligand interactions, and molecular structures. The
in silico techniques have long been known still are just being applied to unravel drug
bioavailability issues. Many publications have reported novel applications of the computa-
tional models towards achieving improved drug BA, including predicting gastrointestinal
tract (GIT) drug absorption properties and passive intestinal membrane permeability, thus
maximizing time and resources. Also, the classical molecular simulation models for free
solvation energies of soluble-related processes such as solubilization, dissolutions, supersat-
uration, and precipitation have been used in virtual screening studies. A few of the tools are
GastroPlus™ that supports biowaiver for drugs, mainly BCS class III and predicts drug
compounds’ absorption and pharmacokinetic process; SimCyp® simulator for mechanistic
modelling and simulation of drug formulation processes; pharmacodynamics analysis on non-
linear mixed-effects modelling; and mathematical models, predicting absorption potential/
maximum absorption dose. This review provides in silico-experiment annexation in the drug
bioavailability enhancement, possible insights that lead to critical opinion on the applications
and reliability of the various in silico models as a growing tool for drug development and
discovery, thus accelerating drug development processes.
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INTRODUCTION

Overview of Bioavailability (BA) of Medicinal Drugs—The
“bottleneck™

The drug approval journey encounters several chal-
lenges, such as high costs, safety (1), tight timelines, most
importantly, the need for the drug to demonstrate efficacy
and safety (2). Bioavailability could be another stumbling
block to discovering and developing efficacious drugs if not
addressed in this journey. First, an active pharmaceutical
ingredient (API) must dissolve in the gastrointestinal tract
before being absorbed through the gut wall (3). When a
tablet is swallowed, it disintegrates to release the active
pharmaceutical ingredient (API). After that, it enters the
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bloodstream and passes through the liver. Finally, it travels to
the site of action to produce the desired therapeutic effect in
the systemic circulation. Still, some APIs would be lost to
metabolism due to the first-pass effect or other factors during
this long trip (delivery) (4.5).

In simple terms, bioavailability is the proportion of
administered dosage of the drug that reaches the systemic
circulation and is available to produce its desired effect. The
bioavailability studies are usually performed by measuring
the concentration of the drug in the blood after administra-
tion of the drug following systemic study protocol and
documented over time. The systemic protocol is crucial for
clinical trials in early drug development.

Intravenous administration results in almost 100% bio-
availability among all drug dosage forms. Nevertheless, oral
drug formulations are preferred due to their better physical
and chemical stability and higher patient compliance—S85%
of the most sold drugs in the USA and Europe are orally
administered (3). However, achieving high bioavailability for
orally administered medications is considered a “bottleneck”
in drug discovery. Moreover, almost half of potential chemical
entities and drugs currently in the developmental stage are
categorized as “practically insoluble” (3,6). Figure 1 high-
lights the different drugs classes according to the
Biopharmaceutics Classification System (BCS), a system to
differentiate the drugs’ solubility and permeability (7).

It is often misperceived that high doses of active
ingredients can be given to patients to achieve therapeutic
efficacy. Nonetheless, there may be a risk of toxicity, limiting
the drug’s tolerability. Optimizing a drug’s bioavailability will,
in turn, reduce its therapeutic dose, hence, reducing associ-
ated side effects.

Drug bioavailability and strategies to overcome these
challenges were briefly highlighted in the following sections.
However, this review emphasized the different computational
models for studying and predicting drug bioavailability. It
further provides a platform to understand the “interface”
between the experiment and in silico bioavailability studies.
Hopefully, it would lead to some critical opinion on the
applications and reliability of the various in silico models as a
growing tool for drug development and discovery.

CHALLENGES OF DRUG BIOAVAILABILITY IN
DRUG DISCOVERY

Many barriers could preclude high drug bioavailability
(8,9). Although there is no systematic classification for the
contributing factors that influence drug bioavailability, we
opted to classify these barriers into four categories. They
include (1) drug product-related factors, such as the physico-
chemical properties (10) of the drug itself and the
formulation/composition of the drug dosage form/product;
(2) features of the human body, including genetics, age,
specific disorders, gastric emptying rate (11), and an individ-
ual’s level of physical activity (12); (3) route of administration
(13); and (4) drug-ligand interactions (12,14), including drug-
drug (15), drug-food (16), or drug-enzyme (induction/inhibi-
tion) (17,18) interactions.

An initial pharmacokinetics (PK) assessment is critical in
resolving the limiting barriers of bioavailability, although it is
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utterly impossible to address/assess all the above factors in a
single systematic protocol to attain “maximum bioavailabil-
ity”. Hence, it is the appropriate strategy through which the
bioavailability can be optimized.

ASSESSMENT OF DRUG BIOAVAILABILITY

Experimental bioavailability tests are performed for a
new drug to determine important PK parameters such as
absorption rate, the extent of absorption, excretion rates, and
metabolism and elimination. These essential pharmacokinetic
parameters are critical for establishing dosage regimens. In
early drug discovery phases, profiling a drug compound
involves individual assessments of solubility, permeability,
and susceptibility to the first-pass metabolism—these are the
three most likely contributors to inadequate oral bioavail-
ability. An initial evaluation of absorption potential can be
performed via computational screening, and high throughput
in vitro assays are typically carried out to prioritize com-
pounds for in vivo studies.

The Biopharmaceutics classification system (BCS) has
been one of the most potent predictive tools created to
promote product development in recent years. Herein, we
refer to several literature reviews that have thoroughly
covered this topic (19-27): the current review’s focus.
Nevertheless, we highlight the crucial concept for experimen-
tal bioavailability assessment to understand the basis of the in
silico counterparts utilized to study and predict BA.

STRATEGIES TO OVERCOME DRUG
BIOAVAILABILITY ISSUES

Reports have shown that approximately 90% of the drug
candidates derived through high throughput screening exhibit
low aqueous solubility (28,29). The poor aqueous solubility of
these drugs leads to an erratic bioavailability with subsequent
unwanted side effects. Undoubtedly, oral bioavailability is the
most imperative attribute of the drug molecule to be
considered in its selection during the drug discovery stage.

Among the drug routes of administration, oral delivery is
usually synonymous with low drug bioavailability at the
action site (1), despite its superior strengths compared to
various other delivery routes. Its advantages are pretty
overwhelming, including ease of administration, sustainable
delivery, desirable therapeutic effects, probable long shelf life
solid formulation, intensified immune response, and patient
compliance (24). Improving oral drug bioavailability is the
most realistic approach (8). Thus, it is recognized and
regarded as the most attractive drug pathway (8). The drugs
orally administered pass through and absorb in a small GI
tract compared to other segments, including small (jejunum
and ileum) and large intestines (cecum, colon, rectum). The
drugs face barriers categorized as biologic and technical; thus,
they denature the orally administered drug, prevent success-
ful absorption in the target, and create properties addressing
the barriers/scaling up complications. Such surrounding
factors as a drug’s residence time, pH, and diversity of
bacteria in different segments influence drug absorption.
The causes of drug bioavailability issues in the oral route
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Fig. 1. Biopharmaceutical Classifications Systems of drugs based on solubility and permeability

properties; class I, class II, class III, and class IV

include low drug solubility in water, poor dissolution rate,
poor permeation of drug molecules across the membrane, and
pre-systemic metabolism (first-pass metabolism). Addition-
ally, degradations of the drug or chemical interactions with
the gastrointestinal tract, drug efflux pumps, crystal packing,
polymorphism, molecular weight, and inter- and intramolec-
ular hydrogen bonding lead to low drug bioavailability
(30,31). These shortcomings of oral administration pose
critical concerns because the drugs’ pharmacokinetics data
obtained from the oral pathway has remained challenging.
Supposedly, drug delivery via alternative routes should
have been absolute for drug administration because high drug
bioavailability is attainable. However, they also have weak-
nesses and encounter various specific barriers against drug
delivery (31). Thus, the oral drug routes have remained the
most favourable for obtaining targeted therapy (24). More-
over, poorly water-soluble drugs have been shown to cause
clinically severe problems (32) such as high patient costs,
inter-patient variability, and increased risks of toxicity/death.
The scientists from the academia and R & D sectors have
shown a noticeable interest in developing new strategies for
addressing the poor solubility/bioavailability issues associated
with many drug candidates. Poor aqueous solubility and low
permeability are the two leading factors causing the poor
bioavailability of many drug candidates. The enhancement of
insoluble BCS-II and BCS-1V drug candidates provides the
drug molecules possible treatment of a range of challenging

diseases such as type II diabetes (33), cancer (34), and
inflammatory infections. For instance, self nano-emulsifying
drug delivery systems (SNEDDs) were used to improve the
drugs’ solubility and provide a large interfacial area to
increase the absorption rate of insoluble drugs (33,35).
However, these drugs have poor bioavailability and solubility
issues, becoming the primary hurdle for commercializing the
new pharmaceutical products. The strategies for improving
the bioavailability of the potential drugs have been classified
into the main classes discussed below.

Physical Methods

More than 85% of pharmaceutical dosage forms have
APIs in the crystalline state (31). Owing to stability issues of
the amorphous particles, the crystalline form of the APIs is
preferably chosen for dosage form development. Small
particles have a large surface area, leading to a high
dissolution rate and subsequent rapid BA compared to the
macroparticles. Particle size reduction techniques, including
micronization and milling, are the two established techniques
for reducing the size of the drug compounds. Micronization
through jet milling can effectively reduce particle size <5 pm
(36,37).

Furthermore, ball milling approaches are employed to
produce nanocrystals with particle sizes < 300.0nm (34). The
recent literature suggests that the cocrystal method has
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become the most popular approach for improving the
solubility and bioavailability of poorly water-soluble drugs.
A cocrystal is a crystalline structure formed by two or more
molecular entities, where the entities are linked through weak
intermolecular forces, including hydrogen bonding (38). The
majority of cocrystals, where a single API (active pharma-
ceutical ingredient) is co-crystallized with non-active co-
formers, have been investigated. Cocrystals lead to more
stable crystal forms with better solubility profiles and
enhanced bioavailability. For example, the cocrystals of
carbamazepine-saccharine and acetazolamide-nicotinamide
have exhibited enhanced bioavailability compared to their
raw counterparts (39,40). Furthermore, several multidrug
cocrystals have also been recently reported, where the drug
molecules are exploited as conformers to yield highly water-
soluble drug-drug cocrystal (41). In contrast to the physical
mixture of the two or three APIs, the multidrug cocrystals
demonstrated boosted bioavailability (42).

Chemical Methods and Medicinal Chemistry Tools

Medicinal chemists prioritize the bioactivity and bio-
availability attributes of the new potential molecules during
the early discovery stages of new APIs. Therefore, drug
design strategies primarily focus on the significant oral
absorption of the new molecules during the early stages of
the lead selection and optimization process. For the ideal
drug design strategies, understanding the physicochemical
properties and PK of the drug molecules are the utmost
parameters to consider. Moreover, pharmacodynamics (PD),
which describes the behaviour of drugs on the body, requires
consideration. This background provides an intelligent way to
design the new potential drug molecule.

The therapeutic potential of drug molecules builds on
their physicochemical properties. For ionizable drug com-
pounds, a change in pH of the medium is a very effective tool
for increasing drug solubility. Solubility of most drugs, either
weak acids (low pKa) or weak base (high pKa), is easily
increased by a change in the pH and enhanced bioavailability.
In addition, salt formation has also been reported as one of
the easy and well-established techniques for increasing
solubility and dissolution of the acidic and basic drug
compounds (43). The interaction/permeability of the salt
form of the drug molecules is more consistent and faster than
the pure drug. Among the physical methods for improving
the bioavailability of the drugs, the concept of prodrug has
become an expendable approach (44). Prodrugs are the
inactive derivates of drugs formed inside the body through
hydrolysis or enzymatic reactions. Prodrugs occur through
covalent interaction by the conjugation of the chemical
moiety. However, the newly attached groups should be easily
cleavable and reversible to release the actual drug when
entering the bloodstream. Therefore, the drug molecules with
polar functional groups, including hydroxyl, amino, carboxyl,
and phosphate groups, are the most suitable choices for
converting to high lipophilic ester or alky derivatives through
prodrug strategies.

Prodrugs, in which the newly attached group does not
mask the chargeable groups but plays the transporter role,
have become attractive classes for drug delivery scientists.
The peptides, like Oligopeptides, are the most effective
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transporters to carry a variety of drug molecules into the
bloodstream successfully. For example, the bioavailability of
acyclovir and ganciclovir has been improved through the
peptide transporters’ prodrug technique (44). Valquinidine, a
quinidine prodrug synthesized through the peptide moiety,
has recently shown enhanced bioavailability (45). Hence, a
prodrug concept is an instrumental approach exploited for the
targeted drug delivery application with maximum therapeutic
output.

Formulation Strategies

Formulation strategies for addressing the poor bioavail-
ability issues of several available marketed drugs and the
drug candidates in the development pipeline have become the
most economical suitable choice for drug delivery scientists.
In contrast to chemical modifications/discovery of the new
drug molecules using sophisticated medicinal chemistry tools,
formulation development through available safe excipients is
a very accessible and time-saving approach. Numerous
formulations have been reported for addressing the erratic
bioavailability of many drug compounds (27,30,37,46-48).
These approaches include nanosuspensions, micronization,
nanoemulsions, nanocrystals, polymeric nanoparticles, solid
dispersion, and complexation. Other techniques are lipo-
somes, co-solvents, micelles, phytosomes or nano-
phytosomes, solid lipid nanoparticles (SLNs), lipid polymer
hybrid nanoparticles (LPHNSs), polymer hybrid microspheres,
self-emulsifying drug delivery systems (SEDDs) (Fig. 2). The
application of nanoparticles has become the most successful
formulation approach to improve the poor drug bioavailabil-
ity. This technique allows high drug adhesiveness to the
epithelial membrane, high concentration gradients, high
saturation solubility, and improved dissolution. The bioavail-
ability of poorly soluble drugs was enhanced by 80 folds using
nano-suspensions and nanocrystals techniques. Such drugs
include dexibuprofen, silymarin, domperidone, anticancer,
glibenclamide, artemether, lumefantrine, glimepiride, and
many antibiotics (25,49-51).

Co-solvency or Combination of Solvents

Co-solvency is a classical technique that enhances the
aqueous solubility of poorly water-soluble drugs utilizing
water-miscible or partially miscible organic solvents by
reducing the interfacial force between the aqueous solution
and hydrophobic solute (52). It is simple and effective (53).
Such co-solvents are sorbitol, ethanols, and polyoxyethylene
glycol. Co-solvency is one of the most widely used ap-
proaches, and its formulation advantage for the poorly
soluble drug can be achieved for both oral and parenteral.
The solubility of antidiabetic medications (e.g. repaglinide)
(53) has been enhanced with this approach. Also, the poor
solubility of ethylparaben and enrofloxacin drugs has been
improved. The use of surfactants enhances the solubility and
dissolution of poorly soluble drugs and stabilizes drug
suspension because of their amphiphilic nature (23). This is
referred to as the micellization technique. The mixed micelles
are designed based on the drug physical and chemical
properties and the compatibility between the micelle and
drug substance. Surfactants decrease surface tension to
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Fig. 2. Different strategies for enhancement of solubility/bioavailability.

enhance the dissolution rate of lipophilic drugs in the aqueous
medium. The engineered micelle structure provides a high
solubilization capacity of the bioactive compounds (54).
Besides, fabricated micelle has a characteristic control release
due to the mixed micellar formulation. Micelle is formed
when the surfactant’s concentration exceeds the critical
micelle concentration (CMC), ranging between 0.05 and
0.10 % (55). Some examples of poorly soluble drugs
enhanced using micellar solubilization include repaglinide,
glimepiride, antidiabetic agents. Non-anionic surfactants such
as glycerides, low molecular weight mono- and di-fatty acid
esters (polyethylene glycols), and polyoxyethylated castor oil
are commonly used surfactants (35,37).

Complexation Strategy

Complexation is crucial for enhancing poorly soluble
drugs’ solubility and dissolution rate (55). It is among the
most successful approaches used to enhance drug bioavail-
ability. For example, cyclodextrins (CDs) are complexing
agents often used (56). They are cyclic torus-shaped mole-
cules with a hydrophilic outer surface and a hydrophilic
central cavity that accommodate various lipid-loving drugs,
which allow effective improvement when included in the
drug’s drug formulation physicochemical properties. Such
characteristics are bioavailability, stability solubility, and
dissolution rate. B-cyclodextrin type is more suitable for the
practical purpose among cyclodextrins (56). CDs are obtained
from starch involving biocatalytic conversion and form
inclusion complexes with the drug, thus taking up a whole
molecule or part of it into the cavity. In recent years, they
have found increasing applications in pharmaceutical formu-
lations. The prepared inclusion complexes with cyclodextrin
have successfully overcome the solubility of poorly water-
soluble drugs. The formulations containing lipids have
improved the orally administered drugs by increasing the
bioavailability of poorly water-soluble drugs and changing

their release profile. Moreover, such lipids are readily
available with specific properties. Examples of complex drugs
with p-CD are Prostarmon-E™ sublingual tablets and
piroxicam.

However, lipid formulations including SLNs,
phytosomes, nano-phytosomes, lipid dendrimer hybrid nano-
particles, LPHNs, and SEEDs have become the most
attractive formulation approach. They have substantially
enhanced the bioavailability of several challenging drug
molecules (51,57,58). Among the lipid formulations, LPHNs
and SEEDs have tremendous attraction due to their excep-
tional drug loading potential and stability compared to the
conventional lipid formulations. In a lipconsensus model
polymer hybrid system, both the hydrophilic and hydrophobic
entities are embodied. A lipid-polymer hybrid system consists
of the lipids layer that are made up of hydrophilic and
hydrophobic moieties (phospholipids) used to deliver
hydrophophilic and hydrophobic drugs, even protein
(59)..Therefore, this system opens up a window for delivering
different classes of drug compounds. SEEDs have the
potential to effectively release the drugs that belong to
BCS-1I, BCS-III, and BCS-IV with 100% entrapment effi-
ciency to the bloodstream. This system completely protects
the drug from degradation in the GI tract and delivers the
drug to the lymphatic system (60,61).

ENHANCEMENT OF DRUG BIOAVAILABILITY
USING COMPUTATIONAL MODELS

Several computational modelling approaches have been
put forward to provide mechanistic insights into the oral drug
delivery system simulation (62-64). Computational tech-
niques are now available to help predict and provide insights
into the properties involved in gastrointestinal tract drug
absorption. While some mechanical models fall into disper-
sion models, the remainder falls into compartmental models.
Typically, the dispersion models define the GIT as a single
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tube with varying parameters. However, PK-Sim employs a
dispersion model that allows quantitative pharmacokinetics
(PK) predictions in human and pre-clinical animal models.
The GIT is modelled as a cylindrical medium with varying
properties (65-67). In addition, this software considers the
characteristics of the species, gender, age, and patient
population, providing the intestinal absorption and the drug
distribution in the organs.

Furthermore, drug transit in the GIT is modelled by
introducing a transit function in such a model. The transit
function computes part of the drug present in a segment of
the GIT, implying that the swallowed drug is instantaneously
transmitted to all the areas of the GIT, which might be small
in quantity. In light of this, such models cannot capture
accurately the physiologically realistic gastric and intestinal
emptying times (68).

On the other hand, the compartmental models represent
the GIT as a series of compartments, and each has a uniform
concentration. The absorption compartment and transit
(CAT) model is a well-known compartmental GIT model
developed by Yu er al. (69,70). This model divides the GIT
into one stomach segment, seven small intestine segments,
and one colon segment, totalling nine. Also, similarly to the
dispersion models, the CAT model suffers from the instanta-
neous drug presence within all the compartments. The CAT
model serves as a precursor to other models such as the
Advanced Compartmental Absorption and Transit (ACAT)
model (71) and the Dissolution Absorption and Metabolism
(ADAM) model (72). While the new models include the first-
pass metabolism, colon absorption, and gut wall metabolism,
they still exhibit similar problems encountered by the CAT
model. Many software packages have emerged with inte-
grated oral absorption models with physiologically dependent
pharmacokinetics (PBPK) structure and compound databases
to provide predictive tools for drug design and pharmacoki-
netics studies (70,73).

Statistical models dependent on regression analysis from
several descriptors and the response of interest, such as
solubility, permeability, and interactions with transport pro-
teins, have become extremely common, owing partly to their
ease of use and the speed with transport which predictions
can be made. These multivariate data analysis models are
based on quantitative structure-activity relationships (QSAR)
used in medicinal chemistry to investigate the potency of a set
of ligands to estimate the effectiveness of new analogues.
QSAR phenomenon emerged in the early 1970s and was
based mainly on the correlation between a single univariate
property and the response in an activity screen. More
predictive, complex models for activity were developed later
based on several molecular properties (multivariate). Differ-
ent linear and non-linear methods such as partial least
squares projection to latent structures (PLS), support vector
regression/ machines (SVR/SVM), random forest (RF), and
artificial neural network (ANN) are the most widely used
methods for predicting absorption related properties such as
solubility, permeability, transporter interactions (74,75).
These models are often combined with so-called consensus
models to produce more precise predictions (76). All the
models have one thing in common: they extract descriptors
linked to the response parameter. Several different steps are
taken to certify that the extracted descriptors are correlated
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to the response (and not just a function of, e.g. a biased
dataset). Usually, resampling measures examine model ro-
bustness and relevance of descriptors. Cross-validated R2
(Q2), bootstrapping, and permutation tests are examples of
such. Q2 is a statistical measure that estimates the model
performance when subsections of the training set in the
model generation are excluded (76).

Solubility Prediction

The thermodynamic solubility of a drug or compound
fully non-ionized at a pH is known as intrinsic solubility. The
parameter is determined after the solid (stable polymorph)
equilibrium and the dissolved form has been established.
Computational models that predict this property from molec-
ular structure alone usually depends on multivariate data
analysis (e.g. methods such as PLS, ANN, SVR, and RF).
These methods make available quantitative results. The
prediction accuracy ranges from 0.5 to 1 log10, which means
that a predicted solubility value varies by up to 3-10 times
from the experimentally determined value (77,78). Lipophi-
licity, non-polar surface area, molecular flexibility, and
aromaticity/m—m interactions tend to be essential molecular
descriptors for intrinsic solubility (77,79,80). The intrinsic
solubility value is not a physiologically important measure for
several ionizable compounds. Instead, it should be viewed as
a physicochemical fingerprint of the molecule.

A drug is exposed to a wide variety of pH after oral
administration. The pH of the stomach is acidic (1.7-3.3;
median of 2.5) when in the fasted state, while the pH of the
distal jejunum is neutral or slightly basic (6.5-7.8; median of
6.9) (81). The pH, therefore, remains at a high level for the
fasted distal part of the ileum and colon, with an average pH
of 8.1 and 7.8 reported, respectively (82,83). In addition to the
pH gradient, bile secretion in the duodenum forms lipoidal
nano-aggregates, such as mixed micelles and vesicles, in the
intestinal fluid consisting of phospholipids and bile salts.
Thus, the final solubility of drugs in the intestinal fluid is
greatly influenced by changes in pH and the existence of
nano-aggregates with high solubilizing potential.

As a result, solubility varies by person and is determined
by food composition and prandial state (physiological condi-
tion when a meal is taken) (84). Hence, solubility prediction is
complex in intestinal fluids. The most convenient approach is
to estimate intrinsic solubility and pKa using the in silico
models, then insert these values into the Henderson-
Hasselbalch equation. In silico models for predicting solubil-
ity in fasted human intestinal fluid (HIF) or bio-relevant
dissolution medium mimicking this fluid have recently
appeared (85).

The modelling of solubility using the thermodynamics
cycle (Fig. 3) is one of the recent principles investigating the
fundamental underlying mechanistic solubility and the in-
sights into the property (86). An attempt at the thermody-
namic cycle model describes the solubility better than the
QSRP models (86). The intrinsic solubility and the Gibbs free
energy change are given as:

AG(sol) = AG(sub) + AG(hydr)—RTlnSOVm
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Fig. 3. The thermodynamic solubility cycle model. AGsub—Gibbs free energy of sublimation,
AGsolv—Gibbs free energy of solvation, AGhyd—Gibbs free energy of solvation, and

AGtr—Gibbs free energy of transfer (86).

AGson, AGsuby, and AGyar are, respectively, the
Gibbs free energies of the solution, sublimation, and hydra-
tion. R is the molar constant of the gas and 7, the temperature
(K). The S, and V,, terms are the crystal’s intrinsic solubility
and molar volume, respectively.

The Gibbs free energies of all the three steps of the
thermodynamic cycle can be calculated theoretically (87).
AGsupy can be calculated by modelling the potential-based
lattice energy and dynamics simulations, while Gibbs free
energies of hydration and solvent can be estimated using
quantum mechanics. The last term, AG ), can be solved from
the calculated log P. Moreover, some stepwise computational
modelling methods have also been used to evaluate the terms
in this cycle to model the free energies of hydration and
solvation in pure melts and amorphous matter (87,88).

Simulation Model of Drug Permeability Through
Biomembrane

Although oral absorption can be affected by many
factors, including physicochemical, physiological, or formula-
tion-related, two essential properties that have been funda-
mentally acknowledged to play the most critical roles in
human intestinal absorption of drugs include permeability
and solubility (89). For decades, various in vivo and in vitro
experimental models have been used to predict drug candi-
dates’ permeability. Most recently, however, computational
models have also been employed to predict passive intestinal
membrane permeability with the advantage of maximizing
time and resources, thereby conveniently reducing the time it
takes for hit compounds to follow the developmental process

into stage 4. While the permeability of compounds is related
positively to lipophilicity, hydrogen bond capacity and
molecular size are negatively associated with it (90,91). As a
result of passive diffusion across the lipoidal membrane,
membrane permeability is typically high, and absorption is
not permeability-limited for compounds in the lipophilic, B-r-
0-5 chemical space. Highly polar and larger molecules, on the
other hand, often exhibit permeability-limited absorption
(92). However, intrinsic membrane permeability is usually
high for lipophilic drugs. Various cellular mechanisms can
play a role in the transport rate, and the ease at which highly
lipophilic compounds cross cells. Entrapment in the mem-
brane, non-specific binding to intracellular proteins, and
specific binding to membrane-bound efflux transport proteins
can all be important determinants of cellular transport rate
and extent (93,94).

Similar computational model techniques and multivari-
ate tools (i.e. PLS, ANN, SVR, RF) are used to predict drugs’
permeability (74). For the validation test sets, the accuracy of
in silico models is 0.39-1.43 log10 units (95). In silico models
for predicting the effective permeability P.g have also been
developed, with accuracy comparable to cell-based models
(76). However, since the available dataset is limited, the Peg
models are typically analyzed with fewer test compounds
(generally nb10). Thus, computational models for membrane
permeability prediction can be broadly divided into two, viz,
qualitative and quantitative models.

Qualitative Models

In a bid to develop qualitative models to predict
membrane permeability, researchers first examined an array
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of compounds classified to have attained the phase II stage of
the drug development process (96). It is believed that
compounds crossed this stage are adequately absorbed and
possess other essential properties that make them suitable to
be absorbed orally. While using a computer-based multifac-
torial approach, these compounds were classified as either
drug-like or non-drug-like. Qualitative models of drug-
likeness have been developed by scrutinizing drug-like
compounds using systematic patterns in their structures,
comparing them with non-drug-like compounds and analyzing
utilizing a set of molecular descriptors (97-99). Qualitative
models have been widely employed due to the lack of
definitive experiments to predict membrane permeability
and the lack of allowance for studying many compounds.
However, this model has the drawback of being too easy in
that it is devoid of the complexity to differentiate between
drugs and non-drugs succinctly. The following rules provide
molecular descriptors [6-11] used in qualitative models to
predict oral bioavailability and permeability of compounds.

A. Rule-of-Five: This rule was introduced by Lipinski
and co-workers and has been extensively used as a
qualitative predictor of absorption and permeability
of oral compounds. Lipinski reported four important
molecular descriptors capable of predicting a com-
pound’s drug-likeness in a study involving 2245 phase
IT compounds analyzed. These include the number of
hydrogen bond donors (greater than five), hydrogen
bond acceptors (greater than ten), calculated octanol/
water partition coefficient (more than five), and
molecular weight (more than 500). The study con-
cluded that if greater than two limits are exceeded,
the compound is not likely to be a drug (100).
Recently, the clinical relevance of this rule has been
subjected to scrutiny.

B. Verber’s Rule: Verber and co-workers proposed this
rule after analyzing the oral bioavailability of about
1100 compounds in rats (101). According to them,
molecular predictors of good oral bioavailability
believed to be independent of molecular weight,
unlike rule-of five include molecular flexibility (mea-
sured by the number of rotatable bonds; 10 or fewer
rotatable bonds) and polar surface area (PSA equal
to or less than 140 A?) in rats. However, studies show
Verber’s rule cannot predict oral bioavailability with
high confidence and should be used cautiously in
humans (102).

C. Martin’s Rule: In Martin’s analysis of bioavailability
data of 553 compounds in rats, he proposed a simple
scoring scheme called ABS. Martin predicts rat
bioavailability from many molecular properties like
PSA Lipinski’s rule of five and molecular charged
state (103). Since Martin’s rule was developed using
data gotten from rats, extrapolation of the perfor-
mance in humans also needs further investigation.

Quantitative Models
The need for quantitative models to predict biological

membrane permeability of drug candidates has gained
relevance due to established drawbacks stemming from the
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sole use of qualitative models such as Lipinski’s Rule of Five.
As a result, quantitative models are developed by correlating
experimentally derived permeability and computed molecular
descriptors of drug-like compounds. Figure 4 illustrates 2D
and 3D molecular structures, conformational space, and wave
function for predicting membrane permeability of candidate
compounds with the corresponding molecular descriptors.
These descriptors refer to the mathematical representation of
properties of molecules obtained from algorithms (104). They
can perform similarity searches in molecular libraries by
finding molecules with similar chemical and physical proper-
ties due to their similar descriptors’ data. The numerical
values of the molecular descriptors allow the quantitative
description of the physical and chemical information of the
molecules. For instance, log P quantitatively represents the
molecules’ lipophilicity. It is obtained by determining the
molecule’s partitioning in the aqueous-lipophilic phases (e.g.
water/n-octanol) interface (105). In addition, these descrip-
tors are applied in adsorption, distribution, metabolism,
excretion, and toxicity (ADMET) prediction models, corre-
lating the structure-property relationship to simulate
ADMET properties of compounds based on their descriptors
values (106). The 2D and 3D molecular descriptors are
applicable depending on the molecular representation level
needed for estimating the descriptor. Although a 1D descrip-
tor is also used, it is the simplest, representing the information
obtained from the formula of the molecule, including the
molecular weight, atom type, and count contained in the
molecules. More complex than the former is the 2D,
representing the molecule’s information, including shape,
size, and electronic configuration, subject to the database
volume (106).

Hence, the calculation of a molecule’s part, missing in
the data, could produce a false result. Lastly, the 3D
molecular descriptors predict the properties-relating of the
molecular 3D conformation like intra-molecular H-bonding
(104). Examples of 3D calculation descriptors of the mole-
cules are the polar and non-polar surface area. This
correlation is usually obtained through methods from simple
statistical analysis (such as linear regression analysis and
principal component analysis) (107) to complex methods
(usually involving artificial neural networks (ANN), support
vector machines (SVM), and genetic algorithms (GA) (108-
111). These complex methods were utilized in various models,
including the Andrew model, Yoshida model, Pintore model
(112), Turner and Maddalena model (113), Wang model
(110), Moda model (114), and Ma model (111). Molecular
descriptors gleaned from fragment and atom counts that have
been correlated with membrane permeability with varying
success include hydrogen bonding capacity, lipophilicity, and
molecular size. Other descriptors include electro-topological
state indexes, a combined ensemble of physico-chemical
properties, and solubility parameters. Evidence suggests that
extrapolations on membrane permeability using simple
methods extensively are similar to those obtained from more
complex computational methods (115,116).

In contrast with the simple model, which applies a few
descriptors, most previously reported models for predictive
permeability values use several structural parameters and
complex equations. For easy prediction, a simple method for
membrane permeability is a necessity. A reported case study
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Fig. 4. A schematic representation of molecular structure representations (2D structure, 3D structures,
conformational space, and wave function) for predicting membrane permeability of candidate compounds with
the corresponding molecular descriptors that can be derived from them.

showed that Caco-2 cell permeability was predicted using a
data set of selected compounds (50) for training an ANN
model. The model produced an /> value of 0.952, which
correlated with reported experimental log kp values,
indicating a complex relationship between the permeability
and the penetrant (117). Similarly, a simple ANN method,
which did not use experimental parameters, was developed
and used to predict famotidine permeability. The simple
predictor produces a similar precise permeability prediction
for new drugs compared to the complex equations model
(117).

The solvation energy (118), solubility (119), and lipophi-
licity (118,119), have been described using molecular surface
properties obtained from molecular mechanics calculations.
Polar molecular surface area (PSA), assumed to be related to
hydrogen bonding capacity, has gained increased relevance as
a molecular surface property in predicting the rate of passive
membrane transport due to its ability to predict membrane
permeability more accurately (107,120-127). A modification
of the PSA method known as dynamic PSA (PSA,), which
considers low energy conformations and single molecular
conformation obtained from the usual PSA method, has also
been observed to show conformational flexibility of com-
pounds better. Though most studies demonstrating the
importance of the PSA method were done with compounds
with low PSA values, more conformationally flexible com-
pounds with larger PSA values are expected to display
substantial variability between PSA and PSA4,

The methods for predicting human intestinal permeabil-
ity include a model constructed using PSA, lipophilicity, and
hydrogen bonding properties of compounds based on partial
least squares projections (PLS) (124). Another method for
predicting intestinal permeability from 3D structure-based
molecular descriptors is a molecular surface-weighted holistic
invariant molecular method (MS-WHIM) (128). The MS-
WHIM model transcribes information encoded by the
compound’s 3D molecular structure into descriptors related
to physicochemical properties. Instead of using molecular
descriptors, another method correlates vectors that express
information relating to surface properties of molecules (called
molecular “hashkeys”) with intestinal absorption through a
neural network (129).

Molecular simulation models have been applied to
characterize small and drug interactions with membranes in
many decades (130). Some simulations of solute like benzene
in 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) re-
vealed the non-heterogeneity of the membrane surrounding.
According to the authors, benzene diffuses through the
hopping mechanism in the simulation on a single nanosecond.
Orsi et al. reported the parallel and perpendicular diffusion
asymmetry for the motion of the p-blockers in the DMPC
lipid bilayer (131). In addition, Marrink and Berendson
calculated the permeation rate of water through phospholipid
bilayer using the indirect molecular dynamics method (132).

Moreover, a coarse-grained approach of drug and lipid
has been used to explore the concentration-dependent effects
(130). The report showed that the drug at high concentrations
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diffuses from maxima to maxima at a slower rate than the drug at
lower concentrations due to the lower concentrations to the
increase in partitioning at the bilayer centre. This model represen-
tation of the bilayer together with all-atom simulations of the drug
allows is characterized by increase sampling time and length scales.
A coarse-grained model has been used to simulate drugs such as
anticancer (paclitaxel) at higher concentrations to obtain the free
energy profile and an anaesthetic drug (halothane) (130). Coarse-
grained simulations can be used to characterize the diffusion and
drug aggregation of buckyballs in phospholipid bilayers. Sponta-
neously, the rate of solute permeation across the membranes was
reported to be relatively slow. However, advanced molecular
dynamics sampling techniques have been reported to assess the
free energy across the membrane. Such sampling techniques in MD
include metadynamics, thermodynamic integration, and adaptive
biasing force (ABF) calculations. These methods have been
applied practically to assess the potential of mean force or
interactions between the membrane and compounds. An example
is illustrated in Fig. 5 (130), in which Jambeck ez al. reported the
application of well-tempered metadynamics, probing the free
energy surface of ibuprofen, diclofenac, and aspirin. The report
showed that cis and trans ibuprofen conformations lead to
dissimilar barriers to cross the membrane.

Though many computational models have been pro-
posed and developed to predict membrane permeability and
absorption of drug-like compounds, most quantitative models
proposed possess the limitation of being developed using
predominantly small datasets, making the compounds used
lack structural diversity. Despite the improved performance
of complex models involving quantum mechanics compared
to simpler models based on fragment counts or atoms,
consistency in patterns remains challenging. A conclusion
relating to the most accurate prediction of membrane
permeability by any of the proposed models is challenging
to achieve; instead, the choice of model to adopt rests on the
nature of information needed and the complexity of compu-
tational effort required.

Formulation Models of Dissolution Study and Disintegration

Computational methods are now employed in predicting
drug solubility properties through some thermodynamic
calculation and prediction. Virtual screening of soluble-
related processes in drug formulation, including dissolution
and precipitation, is now estimated using the classical
molecular simulation model for free solvation energies
(133,134). Computational techniques have as well been
applied to solubilization and supersaturation.

Comparatively, several simulation modules have been
used in drug dissolution, solubility research in drug develop-
ment. Finally, some of the essential tools used in drug
discovery were discussed and the pharmacophoric models
used in discovering lead compounds.

Dose Dissolution and Disintegration Software (DD D Plus)

This computational tool is used in studying the disinte-
gration and dissolution pattern of the primary active ingredi-
ent in the dosage form of drug compounds. DDDPlus is an
advanced computer program formulated by scientists to
simulate the dissolution and disintegration of active
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pharmaceutical compound ingredients (API) in vivo. The
software provides adequate information on drug compounds’
dissolution and disintegration properties useable in drug
formulation design (135), and considers the physicochemical
properties of drug formulation ingredients such as pKa,
diffusion coefficient, density, and solubility. In addition, it
calculates the fluid velocity of the drugs with a micelle-
facilitated dissolution through the incorporation of surfactants
in the media.

GastroPlus™

GastroPlus™ is another software designed to support
biowaiver for different drugs, mainly within class III of BCS.
An example of such drugs includes cimetidine and amoxicillin
(136). GastroPlus™ is designed to simulate intravenous,
ocular, and oral properties in human and animal samples.
The software can simulate the pharmacokinetics and
pharmacodynamics profiles of a drug. It is used in
transporter-based drug-to-drug interaction. The simulation
software is modelled to predict drug compounds’ absorption
and pharmacokinetic process based on the oral properties in
human and animal models. The simulation process comprises
approximately 90 differential equations encompassing the
physical stages during drug transport, such as dissolution,
absorption, hepatic metabolism, excretion, and other clear-
ance mechanisms (137). Gastroplus™ was employed in
predicting the effect on food using the generic and the
reference compound formulation in class II drugs. It was
predicted that the food had about 10% prediction error (138).

SimCyp® Simulator Software

SimCyp® simulator software is a population-based
ADMET program with a database for mechanistic modelling
and simulation of different drug formulation processes such
as oral absorption, distribution, drug phase metabolism, and
excretion for healthy and disease state populations a distinc-
tive ability also to predict drug-drug interaction (139). The
simulator combines all the experimental data from a
population-based sample consisting of properties such as
demographics, the physiological and genetic information of
different sample populations during the pre-clinical phase of
drug discovery and development from in vitro analysis of
enzymes and cellular system with its pertinent physical and
chemical properties of the target drug candidate to predict the
in vivo pharmacokinetic parameters. Several studies have
been done using the SimCyp® software; a good example is a
study on the effect of proton pump inhibitor on prasugrel HCI
product bioequivalence by Fan ez al. (140).

Non-linear Mixed-Effect Modelling (NONMEM®)

Non-linear mixed-effects modelling is an integrated
software tool used in population PK or pharmacodynamics
analysis (141). The simulation model platform of
NONMEM® is used in studying the bioequivalence of single
and multiple-dose administration, thereby predicting the Cpax
and steady-state concentration of drugs. However, reports
showed that the single-dose administration simulation re-
sulted in a highly significant result but could show low
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Fig. 5. The illustration of ibuprofen free energy within a sampled bilayer and incorporated well-tempered metadynamics

model (130).

sensitivity in predicting the failure in bioequivalence study for
steady-state concentrations (142)

Chemoinformatic and Mathematical Predictions of Drug
Bioavailability

Until the twentieth century, pharmaceutical research for
biologically induced drugs has been a herculean task

requiring time, money, and many skills (143). Before a drug
can be validated to induce a biological effect, it must have
undergone several tests and stages, such as clinical and pre-
clinical trials (144). However, from the inception of compu-
tational studies in drug discovery (145), drug discovery and
design research have sky-rocketed into a phase of ease and
accurate precession. In a study by Agoni ef al., the validity
and reliability of computational tools are reviewed (146).
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The low bioavailability of oral drugs is one major
bugbear to the pharmaceutical industry today (128,129). The
report states that 10% of oral drug debacle in drug
development results from adverse absorption, distribution,
metabolism, and excretion properties (147). For this course,
research is carried out to access drug candidates’ oral
pharmacokinetics before moving forward to drug develop-
ment. The in vitro assay is less cost-effective than in vivo;
however, it cannot capture a typical in vivo oral absorption
process.

Prediction of oral bioavailability takes its root from
Lipinski’s rule of five and other attempts for the descriptive
method of defining drug-like molecules. Other rules include
Veber rule (101, 102), Martin’s rule (103), Andrew’s model
(148), Yoshida’s model (149), Turner and Glass model (113),
Pintore’s model (112), Turner and Maddalena’s model (113),
and Wang’s Model (110). However, these rules attempt to be
qualitative rather than quantitative (150,151).

Chemoinformatics Prediction Model

Quantitative Structure-Activity Relationship (QSAR)
models were first discovered by Hirono et al. using the fuzzy
adaptive least square methods. This method classified mole-
cules of 188 non-congeneric into three groups: (1) aromatic,
(2) non-aromatic, (3) hetero-aromatic based on the presence
of rings (152). The result gave insight into factors affecting
bioavailability and its prediction. However, the model was
considered impoverished and discrete, and structural frag-
ments were incorporated with indicator variables to increase
efficiency (152). More models continue to be developed for
predicting oral bioavailability. One of such was built by
Yoshida and Topliss (149). This quantitative in silico model
used the ordered multi-categorical classification method using
the simplex technique method (ORMUCS). This method,
although not readily reproducible yet similar results have
been obtained using SIMCA (114). Equation (1) explains the
discriminant function of ORMUCS, where X; is the ith
component of X which represents the pattern vector in the
d-dimensional measurement space. W; represents the compo-
nent’s weight assigned. Meanwhile, W denotes the vector’s
weight.

S(x)=WX = i Wiw; 1)
i=1

One advantage posed by the QSAR model is that factors
that affect bioavailability are examined, and its effect is
understood. This transparency is needed for further analyses
for bioavailability data with more future work (149). How-
ever, there remains a limitation to this model. Compounds
with a > 500 MW and high hydrogen bonds were not covered
in the dataset used to develop this model. Hence, it might not
give the same expected result (149).

In a research study by Moda et al., a hologram QSAR
model was designed to experiment with about 250 structurally
diverse molecules. The result was analyzed side by side with
an external set of 52 molecules, and an excellent result was
obtained relatively to the experimented values. This consis-
tency can further be examined for new drug candidates
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possessing oral bioavailability (114). A case study is a linear
quantitative structure-activity relationship (QSAR) model
used to model and predict interleukin-1 receptor-associated
kinase 4, TIRAK-4) inhibition activity of amides and
imidazo[1,2-a] pyridines.

Mathematical Prediction

Mathematical or physiologically based pharmacokinetic
(PBPK) models have been developed to mimic biological
processes. The models use several differential equations to
predict bioavailability. Studies show that these models are
dynamic and mechanical and are used to determine the
variation in patients concerning oral bioavailability. Since
1937, PBPK models have continued to gain ground in their
use in drug design research. PK properties, known as ADME
(absorption, distribution, metabolism and excretion), are the
subject of observation and analysis in oral bioavailability, and
alterations in these therapeutic concentrations raise the
research alarm. Too low concentrations could mean an
ineffective therapy, and too high indicates toxicity. The
combination of in vitro and in silico assay can aid the
computation of ADME information input, characterizing the
PBPK models (143).

Initial instances of these mathematical methods as of the
1970s were based on solubility and permeability and could only
predict the extent of absorption under “static” conditions. These
early mathematical models are the absorption potential (AP)
and the maximum absorption dose (MAD) Equation. While the
former calculates the absorbed portion of a given dose, the
latter, on the other hand, calculates the portion absorbed within
6-h time frame (153-155). Although effective, these models
could not compute complex phenomena, such as food effects
and PH-dependent oral absorption. Table I provides two
contrasting information between PK modelling and PBPK
approaches. PBPK Methodology. PBPK models work by
using a set of differential equations to mimic various compart-
ments within the body with the sole aim of articulating the fate
of substance (in this case, drugs) in the body. Organs and tissues
with similar blood perfusion rates are usually grouped into the
same compartment. In order words, organs such as the intestinal
tract, skin, lungs, anus, lungs, and others can be grouped as entry
portals, while kidney, liver, and others are classified as exit
portals (156).

Figure 6 shows the various compartment that represents
the organs and tissues. The rate of blood through these
compartments depends on the tissue volume and the species
of interest. Therefore, in developing a PBPK model, it is vital
to consider the physiological and anatomical data of the

Table I. A Contrast Between the PK Modelling and PBPK Approach

S/N  Classical Pk modelling ~ PBPK approach

1 Based on PK data
2 Result is a set of
fit parameters

Based on physiological knowledge
Result is a predictive simulation
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Fig. 6. A schematic representation of a PBPK model (Designed:
Yinka Akinsiku, 2021)

specific species required and the compound’s partition
coefficient (PCs) in different tissues (157). There is either a
result based on the permeability-limited rate or the perfusion-
limited process for each tissue. The permeability-limited rate
comes to play when dealing with hydrophilic or large
molecules. In this case, the limiting process of absorption is
based on the permeability rate across cellular membranes. In
contrast, the perfusion-limited process occurs with small
lipophilic molecules where the limiting process of absorption
across the cellular membrane is the blood flow to the tissues
(157).
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The differential equations used to model the PBPK
model can be described as follows:

VT xdCT/dt = Q7( Ca—CVr) (2)

CVr ="k, Bp) (3)

Equations (2) and (3) represent the principles followed
for non-eliminating tissues. Thus, Q represents the blood flow
(L/h), C is concentration in mg/L, V for the volume, T
denotes tissues, A for arterial, venous is denoted by V, and
VT is the tissue volume.

Equation (4) represents the principle implemented for
eliminating tissues.

dCT
i Or

VT x (CA—CVT)—CL,‘M X CVUT (4)

where CL;, represents the intrinsic clearance of the
compound (L/h), and the u-term is unbound.

Applications of PBPK Models in Drug
Research. Throughout the drug discovery process and devel-
opment, PBPK models are habitually applied (156). For
instance, it is interesting to note that current research aims to
develop PBPK models for nanomaterials (NMs). Although it
is challenging, however, it is progressive. For example, one
PBPK model was developed to eliminate the biodistribution
of NMs (158), and another was developed from existing
toxicodynamic compartment models that predict the quantity
of Ag and carbon NPs inhaled in the lungs (159). In addition,
PBPK model application is associated with drugs with a
narrow therapeutic window, such as in pregnancy and organ
transplant populations (160).

CONCLUSION

Although the therapeutic drug efficacy might be unat-
tainable due to the low fraction of an administered dose of
the unchanged drug that reaches the systemic circulation,
various interfacing techniques provide a potential platform to
discover a potential novel method or design a drug that can
avert BA issues. Experimental techniques have proven results
in bioavailability studies despite their shortcomings. Similarly,
computational modelling approaches have been evolving
from providing mechanistic insights into the oral drug
delivery system simulation to predicting and providing
unravelling the properties involved in gastrointestinal tract
(GIT) drug absorption. Such models can be classified as
qualitative and quantitative such as Rule-of-Five, Verber’s
Rule, Martin’s Rule, and Polar molecular surface area (PSA),
which relate to hydrogen bonding capacity. The relevance of
PSA, a molecular surface property, is increasingly helpful in
predicting the rate of passive membrane transport due to its
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ability to predict membrane permeability. Several descriptors
and the response of interest include solubility, permeability,
and interactions with the transport protein. The in vivo and
in vitro experimental models have been used to predict drug
candidates’ permeability. Recently, computational models
were employed to predict passive intestinal membrane
permeability, which conveniently reduces the time for hit
compounds to follow the developmental process into the
fourth clinical stage. Similar computational models and
multivariate tools predict drugs’ permeability. Computational
methods are now employed in predicting drug solubility
properties through some thermodynamic calculations and
prediction. Using the classical molecular simulation model
for free solvation energies, virtual screening of soluble-related
processes in drug formulation is estimable. Conclusively,
considering the application of the in silico-experimental
interface provides a critical avenue to explore the possibility
of a lasting solution to drug BA problems, especially poor
aqueous solubility, low dissolution rate, poor permeation, and
extreme drug metabolism in the liver.
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